Temporal variability in the reproductive parameters of deepwater rockfishes in the Gulf of Alaska

Christina L. Conrath ${ }^{\text {a,1 }}$ and Peter-John F. Hulson ${ }^{\text {b }}$
${ }^{\text {a }}$ Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Groundfish Assessment Program, Kodiak Laboratory, 301 Research Court, Kodiak, AK 99615
${ }^{\text {b }}$ Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Point Lena Loop Road, Juneau, AK, 99801

[^0]
Abstract

Reproductive parameters directly influence estimates of stock biomass and therefore affect the determination of catch levels of many federally managed fish species. Reproductive parameters directly influence stock biomass estimates and therefore affect catch levels of federally managed fish species. These parameters can vary over different temporal scales and a better understanding of how and why reproductive traits change will aid in the management of these species. We examined the reproductive parameters of rougheye rockfish, Sebastes aleutianus, and shortraker rockfish, S. borealis, captured in December 2015 and compared them with parameters from an earlier published study. Maturity values in the earlier study were derived from samples collected in from 2008 to 2014 with a concentration of fish collected in the winter of 2009 and 2010. Rougheye rockfish had a smaller length and age at maturity during 2015 (447 $\mathrm{mm}, 17.7$ years) compared to the earlier sampling period ($450 \mathrm{~mm}, 19.6$ years), but neither the interaction of length and time period $(P=0.507)$ nor the interaction of age and time period $(P=$ 0.270) was significant. Shortraker rockfish also had a smaller length at maturity during 2015 (467 mm) compared to the earlier period of time (499 mm) and the interaction of length and time period was not significant $(P=0.830)$. Relative fecundity for rougheye rockfish were not significantly different between the two time periods $(P=0.444)$ and this was also true for shortraker rockfish ($P=0.341$). Skipped spawning rates were significantly lower in 2015 for both rougheye rockfish (2010 $=37.4 \%, 2016=21.8 \%, \mathrm{P}<0.001)$ and shortraker rockfish (2010 = $60.0 \%, 2016=47.0 \%, \mathrm{P}<0.001$). This study was a first step in examining how reproductive parameters for these species may change over time. A comprehensive approach to examining

temporal trends in reproductive parameters will aid in the understanding of how changing environmental conditions are affecting the productivity of commercially important species.

1. Introduction

Rougheye rockfish, Sebastes aleutianus, and shortraker rockfish, S. borealis, are deepwater rockfishes that occur on the continental shelf edge and slope in the Gulf of Alaska (Allen and Smith, 1988; Orr and Hawkins, 2008). These two species are characterized by large size, late maturity, and relatively high fecundity values characteristic of the equilibrium life strategy defined by Winemiller and Rose (1992) that is common in temperate marine fishes. Large body size enhances survivorship during periods of unfavorable conditions, allowing organisms to store energy for future reproductive events, whereas high fecundity allows for higher recruitment during years with conditions that favor survivorship and growth of larvae (Winemiller and Rose, 1992). The lack of life history data combined with the difficulty in ageing shortraker rockfish make it difficult to study patterns of recruitment for this species. The age structure of rougheye rockfish in this region suggest that they have episodic periods of higher recruitment typical of this life history strategy, and it is likely shortraker rockfish have similar recruitment patterns (Echave and Hulson, 2019; Shotwell and Hanselman, 2019). Rockfish of the genus Sebastes are live bearers with internal fertilization (Kendall and Lenarz, 1986). Although fecundity tends to be lower than other similar teleost species that occur in the same environment, fecundity of rockfish species within the Alaska region still ranges in the tens to hundreds of thousands (TenBrink and Spencer, 2013; Conrath, 2019).

In addition to internal fertilization, rockfish of this genus have other unique reproductive characteristics that contribute to this equilibrium life history strategy. The reproductive mode of members of the Sebastes genus is true viviparity, with embryos receiving additional maternal
nutrition beyond what is provided from the yolk sac during gestation (Boehlert et al., 1986). Many rockfish species have immature individuals that undergo abortive maturation, where reproductive development is initiated but oocytes are later resorbed (Nichol and Pikitch, 1994; Hannah and Parker, 2007; Conrath and Knoth, 2013). This process is distinguished from skipped spawning, where mature adults skip a spawning season. Skipped spawning has also been documented for these species as well as other members of this genus in the Alaska region (Conrath, 2017; Conrath, 2019). In addition, maternal effects appear to be important for this genus with documented increases in relative fecundity (Beyer et al., 2015), increased larval quality (Berkeley et al., 2004), decreased occurrence of skipped spawning (Conrath, 2017), and earlier parturition (Sogard et al., 2008; Rodgveller et al., 2011) observed with increasing size or age of the fish. All these characteristics increase the likelihood of these species to take advantage of years with favorable conditions and survive years with unfavorable conditions.

Both of these species are managed in the Alaska Region by the North Pacific Fishery Management Council. Age at maturity estimates are important components of stock assessments. Rougheye rockfish are managed as a complex with blackspotted rockfish, Sebastes melanostictus. In the Gulf of Alaska these two species are modeled together and have combined catch limits but this may be problematic due to differences in growth and reproductive parameters (Shotwell et al., 2014; Conrath 2017). An age-structured population model is used as the primary assessment tool for this complex (Shotwell et al., 2014). Maturity at age estimates are used in this model and influence the estimation of mature female stock biomass. Due to difficulties in aging shortraker rockfish an age-structured model is not used in
the assessment of this species. Shortraker rockfish are managed as a Tier 5 species and catch limits are derived from estimates of biomass and natural mortality.

Fecundity and skipped spawning information is not currently incorporated into stock assessment for these species, but changes in these parameters provide important insight into how reproductive success may be changing through time in response to environmental conditions. Fecundity has been correlated with prespawning energy reserves and some species downregulate fecundity in response to energy reserves during development (Rijnsdorp, 1991; Skjaeraasen et al., 2006; Kennedy et al., 2009). Skipped spawning is also frequently associated with food availability, fish condition, and energy reserves (Rideout and Rose, 2006; Skjaeraasen et al., 2012; McBride et al.; 2015). Determining how fecundity data and rates of skipped spawning should inform stock assessment for rougheye rockfish and shortraker rockfish is complicated by both a lack of historical data and information on temporal or spatial changes in these parameters.

A better understanding of if and how age at maturity, fecundity, and skipped spawning rates vary with time will inform how these parameter estimates should be incorporated into stock assessment efforts. A comprehensive approach examining all of these parameters will provide information on both the success and failure of reproductive efforts. A recent study of the reproductive biology of rougheye and shortraker rockfishes in the Gulf of Alaska collected from 2008 to 2014 found that these species have an age at 50% maturity of 19.6 years and a length at 50% maturity of 45.0 cm for rougheye rockfish and length at 50% maturity of 49.9 cm for shortraker rockfish. Age data was not available for shortraker rockfish. Skipped spawning rates were 37.4% for rougheye rockfish and 60.0% for shortraker rockfish and were related to
the total length of the fish with larger fish being less likely to skip a spawning event (Conrath 2017). It is unknown how size at maturity, fecundity, and rates of skipped spawning vary in time and therefore it is difficult to determine if these high rates of reproductive failure are a cause for concern. The objective of this study was to examine the reproductive parameters of these species in a different time period to better understand how consistent these parameters remain through time and how they may change in response to changing environmental conditions. During this study, rougheye and shortraker rockfish specimens were collected from the same geographic area as this earlier study in order to examine maturity, fecundity, and skipped spawning rates. In addition, the fecundity of specimens collected for the prior study were examined. These data will be used to comprehensively examine the reproductive success and failure of these two species during these two time periods.

2. Materials and methods

Shortraker and rougheye rockfish samples were collected offshore of Kodiak Island using a commercial bottom trawl net, during a scientific charter on the FV Gold Rush in December 2015. Each fish was weighed (g), measured for length (mm), and the ovary was removed and preserved in 10% neutral buffered formalin. The sagittal otoliths were extracted and placed in a glycerol-thymol solution. A formalin-fixed ovary weight was taken once the samples were returned to the laboratory, and a section of ovary was removed for histological analysis. Rougheye rockfish otoliths were aged by the National Marine Fisheries Service, Alaska Fisheries Science Center's, Age and Growth Laboratory using standard break-and-burn procedures
(Chilton and Beamish, 1982). A subsample of 20\% of the otoliths were aged by a second reader, and the percent agreement and coefficient of variation were determined. This subsample was also used to assess whether reader bias was present, and, if needed, a second subsample was read to come to an agreed upon age.

A cross section of one lobe of the ovary was removed, embedded in paraffin, and sectioned and stained with hematoxylin and eosin using standard histological techniques (Sheehan and Hrapchak, 1980). These sections were examined using a compound microscope in order to assess the type of developmental and regressive structures present within the ovary. Developmental stages were defined based on the terminology of Bowers (1992) with modifications for these deepwater species (Table 1). The section was also examined for regressing or atretic oocytes. Oocyte regression was examined by determining the mean proportion of alpha (degradation of the nucleus, yolk, and the zona radiate), beta (compact with disorganized granulosa cells), and delta (containing yellow-brown pigment) atretic oocytes within three microscope field of views (Hunter and Macewicz, 1985). These sections were also scanned for post ovulatory follicles, muscle fibers, and blood vessels within the ovary.

2.1 Age and length at 50\% Maturity

Fish were determined to be mature if there was evidence that they would have successfully spawned in 2016 or evidence of a previous spawning (Table 2). Fish were determined to be immature if lacking development beyond the early yolk stage and no evidence of a prior spawning (POFs or widespread late stage atresia). If there was widespread
early or alpha atresia and no evidence of a prior spawning event, they were determined to be undergoing abortive maturation and were considered immature. For the maturity analyses, mature fish included both developing mature fish and fish that were skipped spawners.

Female age and length at maturity were estimated with a two parameter logistic function given by:
(1) $\hat{p}_{x}=1 /\left(1+e^{-\delta\left(x-x_{50 \%}\right)}\right)$,
where \hat{p}_{x} is the estimate of the proportion mature at age or length- x, δ is the slope parameter (the speed at which maturity approaches 100%), and $x_{50 \%}$ is the age or length at which 50% of the fish are mature. The observed proportion mature at age or length was calculated as:
(2) $p_{x}=\frac{m_{x}}{n_{x}}$,
where m_{x} was the number of mature fish observed at age or length- x, and n_{x} was the total number of fish observed at age or length-x. The model was fit to the raw, binomial data. The negative log-likelihood was minimized using the binomial distribution to fit the observed proportion mature at age or length and estimate the parameters used in the logistic function. A penalty term was included that accounted for maturity at age-0 being 0\%; the negative loglikelihood of the estimated proportion at age-0 was penalized by the negative-log likelihood at age-0 for a maturity of 0% (after adding a constant term to avoid taking the \log of 0) and weighted by 850-1000, weighting values that, after sensitivity analysis, brought the estimated maturity of age-0 close to 0% and did not substantially degrade the fit to other observed maturity proportions at age (James et al., 2014). Uncertainty in the logistic function parameter estimates, and the skipped spawning rates were estimated with a bootstrap procedure that sampled with replacement the observed maturity data (Efron and Tibshirani, 1993).

2.2 Fecundity

Fecundity was estimated for both species using all individuals caught in December 2015 and for samples collected in November 2009 through January 2010 from the earlier study (Conrath, 2017). Fish were chosen for fecundity analyses if they were mature, had developing oocytes (stage 3 or higher) and had a complete intact ovary. Specimens with a high proportion of alpha atresia (>25\%) in the histological slide were excluded from the analysis. Individual potential annual fecundity was estimated by using a gravimetric approach in which the weight of a subsample of oocytes or embryos present was extrapolated to estimate the total ovary weight. Two subsamples were collected from randomly chosen quadrants of one lobe of the ovary. If the coefficient of variation from the initial samples was greater than 5%, two additional subsamples were collected. The individual potential annual fecundity was determined by averaging the fecundity estimates taken for each sample and multiplying by the total ovary weight. In addition, relative fecundity was determined by dividing potential annual fecundity by the somatic weight of the fish. Total annual potential fecundity data was fit to a power function of fork length using the following equation:
(3) Fecundity $=a^{*}(\text { fork length })^{\wedge b}$,
where a is the intercept parameter and b is the slope parameter. In order to examine maternal effect we similarly fit somatic weight to a power function of fork length:
(4) Somatic weight $=c^{*}(\text { fork length })^{\wedge d}$,
where c is the intercept parameter and d is the slope parameter. Then we compared the values
of the slope parameters b and d of each species to determine if larger females are disproportionately contributing to the spawning output of the population following Dick et al. (2017).

2.3 Skipped spawning

Skipped spawning fish were identified as those specimens with no development beyond early yolk stages that had evidence of a prior spawning. Rates of skipped spawning or reproductive failure do not include individual fish that are immature, including fish undergoing abortive maturity. Histological evidence of a prior spawning included the presence of postovulatory follicles or degrading advanced oocytes (stage 3 or higher), or embryos. Due to the difficulty in distinguishing advanced postovulatory follicles and degrading oocytes from late stage atresia, a 15% or greater percentage of beta and delta atretic oocytes within the ovarian section was also considered evidence of a prior spawning. Two types of skipped spawners were identified based on the definitions in Rideout et al. (2005). Resting skipped spawners were in stage 1 or 2 developmentally with no indication of development within the current reproductive year. Resorbing skip spawners also had no developing oocytes beyond the early vitellogenesis stage (stage 2) and both types of skipped spawners contained either late-stage atresia or postovulatory follicles, evidence of a prior spawning. Resorbing skip spawners were distinguished from resting skipped spawners by the presence of widespread early stage or alpha atresia, evidence that a current brood was initiated but failed to develop. All samples for this study were collected in December and both of these species have seasonally synchronous
development, therefore, we expect normally developing fish in this collection to contain oocytes in the ovary that are in the late vitellogenesis or migratory nucleus stage (Conrath, 2017). The amount and types of skipped spawners were examined for each species and the relationship between the maternal length and the proportion of skipped spawning was examined using simple linear regressions.

2.4 Temporal comparisons

Conrath (2017) examined the reproductive biology of rougheye and shortraker rockfishes collected in the years of 2008 to 2014 . Samples collected throughout this time period were used in maturity analyses but only samples from the winter of 2009-2010 were used to examine skipped spawning in that study. In addition, samples from this study collected in the winter of 2009-2010 were used in the current study for fecundity analyses. The use of all the samples from multiple years for the maturity analyses provided a more robust estimate of maturity values that included more immature fish over a broader geographic range in the Gulf of Alaska. Concentrating on samples from the winter of 2009-2010 for the fecundity and skipped spawning analyses allowed for a focused analysis of differences in these parameters during a time of year that aided the successful discrimination of developing oocytes and atretic structures.

Age and length maturity ogives were derived for the 2015 samples and compared to ogives that were published for the earlier time period. A generalized linear model (GLM) with a binomial distribution was used to examine the effect of the interaction of reproductive time
period and fork length on maturity status for both species. A second GLM was used to examine the effect of the interaction of reproductive time period and age on maturity status for rougheye rockfish. Each binomial model was repeated using a quasi-binomial distribution to test for over dispersion and the dispersion parameter was examined.

Potential total annual fecundity and relative fecundity values for the samples collected in 2015 and for the samples collected in the 2009 and 2010 were compared. Generalized linear models, with Gaussian distribution for response values were used to examine effects of maternal size (somatic weight) and collection time period on total annual potential fecundity. This type of model was also used to examine the effect of the time period of collection on relative fecundity. Diagnostic plots of residual trends verses fitted values and standardized residuals verses theoretical quantiles ($\mathrm{Q}-\mathrm{Q}$ plots) were examined visually for trends in each model.

Skipped spawning rates for samples collected in 2015 compared to the published values for the earlier time period. The collection for the earlier time period occurred from November 2009 to January 2010 directly offshore of Kodiak Island. Therefore, all the samples for this analysis were collected in the winter months within the same geographic area. A GLM with a binomial distribution was used to examine the effect of sampling period and maternal length on skipped spawning rates. Each binomial model was repeated using a quasi-binomial distribution to test for over dispersion and the dispersion parameter was examined. The generalized linear models were completed using the packages stats4 (vers. 3.2.0) and multcomp (vers. 3.2.5; Hothorn et al. 2008) in statistical software R, vers. 3.2.0 (R Core Team 2015).

3. Results

3.1 Size and age at maturity

During the December 2015 research cruise all rougheye and shortraker rockfish captured were sampled. Length at 50% maturity of rougheye rockfish was calculated to be 447 mm (C.I. $=440-452 \mathrm{~mm}$) and the age at 50% maturity of rougheye rockfish was calculated to be 17.7 years old (C.I. $=16.4-19.4$ years old). The age data was more variable than the length data and there were some old immature individuals but they tended to be smaller fish (Fig. 1, Table 3). Deep water rockfish otoliths are difficult to age, and the agreement between otolith reader and tester was low (9.8% for ± 0 and $29.4 \% \mathrm{CV}$) due to difficulties interpreting vague growth patterns. All age discrepancies were resolved in the determination of a final age.

The majority of developmentally mature fish had ovaries in the migratory nucleus stage that was similar to samples captured in the winter months in the earlier study (Table 3). There were a larger number of fish undergoing abortive maturity $(\mathrm{N}=47)$ than the earlier time period $(N=28)$. Length and age at 50% maturity were smaller and younger than published values for the earlier time period of 450 mm and 19.6 years (Conrath, 2017) but these differences were not significant. The comparison with the maturity data from the earlier period of time indicate that only length had a significant effect on maturity status ($P<0.001$), but time period, and the interaction between length and time period were not significant ($P=0.536, P=0.507$). The quasi-binomial model had a dispersion value less than 1 (0.866), indicating no over dispersion in the model. Similarly, age had a significant effect on maturity status ($P<0.001$), but time period,
and the interaction between age and time period were not significant ($P=0.090, P=0.270$). The quasi-binomial model had a dispersion value close to 1 (1.49) indicating little over dispersion in the model.

The length at 50% maturity of shortraker rockfish was calculated to be 467 mm (C.I. $=$ 442-491 mm, Fig. 2). This value was smaller than the 2010 length at 50% maturity value of 499 mm (Conrath, 2017) but this difference was not significant. All developmentally mature fish had oocytes in either the late vitellogenesis or migratory nucleus stage that was similar to samples captured in the winter months in the earlier study (Table 3). There were also a larger number of shortraker rockfish undergoing abortive maturity $(N=19)$ than the earlier time period ($N=$ 7). The comparison with maturity data from the earlier time period indicate only length had a significant effect on maturity status ($\mathrm{P}<0.001$), whereas time period and the time period and length interaction were not significant ($P=0.999, P=0.830$). The quasi-binomial model had a dispersion value close to 1 (1.07), indicating the model was not over dispersed.

3.2 Fecundity

The range and mean of fecundity values of rougheye rockfish for both time periods was similar and the effect of time period on both total annual potential and relative fecundity in the GLM was not significant ($P=0.99,0.30$). Somatic weight however, was significantly related to total annual fecundity ($\mathrm{P}<0.001$). There were no obvious trends in residuals in the model diagnostic plots for rougheye rockfish fecundity. Since the effect of time period was not significant, the data from the two time periods was combined for the power regressions of
length and weight and length and fecundity. There was a large discrepancy between the slope parameter of the length and weight relationship $(b=3.11)$ and the slope parameter of the length and fecundity relationship ($\mathrm{d}=5.04$) indicating that larger rougheye have a disproportionately large contribution to the spawning productivity of the population (Table 3).

The mean fecundity values for shortraker rockfish were also similar for the two time periods and the effect of time period on both total annual potential fecundity and relative fecundity in the GLM was not significant ($P=0.23,0.35$). Somatic weight, however, was significantly related to total annual fecundity ($P<0.001$). There were a few large outliers for this species, which in general had much lower relative fecundity values than rougheye rockfish (Figure 3). Three highly fecund outliers are notable within the model diagnostic plots for the shortraker fecundity models but there were no other obvious trends in the residuals. The fecundity of these outliers was confirmed by reexamining the tissue, oocyte size, and ovary weight and they were left in the model. Since the effect of time period was not significant, the data from the two time periods was combined for the power regressions of length and weight and length and fecundity. There was a slight discrepancy between the slope parameter of the length and weight relationship $(b=2.85)$ and the slope parameter of the length and fecundity relationship ($\mathrm{d}=2.99$) indicating that larger shortraker rockfish are contributing slightly less than would be expected to the spawning productivity of the population (Table 3).

3.3 Skipped spawning

Rougheye rockfish failure rates for samples collected in 2015 were 21.8% (CI = 15.7 28.0\%) with most skipped spawning of the resorbing type (75.6\%, Fig. 4). Skipped spawning rates for this species were significantly related to both time period and fork length ($\mathrm{P}<0.001, \mathrm{P}$ < 0.001, Fig. 5). Shortraker rockfish failure rates for samples collected in 2015 were 47.0% (CI = $40.1-53.8 \%$) with most skipped spawning of the resorbing type (65.7%, Fig. 4). Skipped spawning rates for this species were also significantly related to both time period and fork length ($P<0.001, P<0.001$, Fig. 5). Skipped spawning rates for both species were lower in 2015 than 2009 and 2010 and for shortraker rockfish the primary type of skipped spawning shifted to resorbing skipped spawning in 2015. The quasi-binomial models had dispersion values close to $1(1.02,0.97)$, indicating the models were not overdispersed.

4. Discussion

The reproductive output of a large number of teleost species varies temporally due to changes in a number of reproductive processes. Temporal changes in the age or size at maturity have been documented for a variety of species in a diverse array of locations (Harris and McGovern, 1997; Mangeni-Sande et al., 2018; Hunter et al., 2019). Interannual differences in fecundity (McElroy et al., 2015) and skipped spawning (Rideout et al., 2006; Skjaerrasen et al., 2015) have also been documented in teleost species. This study found the reproductive parameters examined followed the same general patterns for both rougheye and shortraker rockfishes between the two time periods examined. In both species there was a decrease in the length at 50\% maturity for 2015 but this change was not significant. This pattern was also
reflected in the age at 50% maturity for rougheye rockfish. The size and age range was similar between studies for both species but there were a smaller number of small, immature shortraker rockfish in the 2015 sample collection, which may have affected the determination of maturity. There was no significant difference in relative fecundity parameters for both species between the two time periods. In both species, there was a decrease of similar magnitude in the proportion of skip spawners observed between the two time periods. Samples from the earlier study were collected over a broader geographical region, but only samples collected directly offshore of Kodiak Island in the winter of 2009 and 2010 were included in the analyses of fecundity and skipped spawning. It is possible this larger geographic range may also have contributed to differences in maturity values.

A more complete understanding of how reproductive processes change through time in response to environmental and fishing changes is important for future assessment of these species. Reproductive processes like maturation and oocyte development are complex and can vary temporally due to demography, phenotypic plasticity, and evolutionary responses of the population (Marty et al., 2014). An evolutionary shift in the length or age at maturity has been documented in many heavily exploited populations with a general trend of the size and age of maturity becoming smaller and younger after a period of exploitation, particularly exploitation that preferentially removes larger, faster growing fish from the population (Harris and McGovern, 1997; Mangeni-Sande, 2019). A smaller size at maturity is generally associated with a smaller potential fecundity and younger fish have been shown to contribute less to the egg production of a population (Kulaw et al., 2017; Mion et al., 2018). Fecundity can also be reduced during the reproductive season through the resorption of developing oocytes
(Kennedy et al., 2008). Temporal changes in fecundity and skipped spawning are more commonly related to phenotypic energetic responses to environmental variability and prespawning energy reserves (Rijndsdorp, 1991; Skjaeraasen et al., 2013). In addition, skipped spawning has been proposed as a life history trade off where delaying reproduction may increase fecundity in later years (Rideout et al., 2006; Folkvord et al., 2014; Skjaeraasen et al., 2015).

Rougheye and shortraker rockfishes are not targets of directed fisheries and landings are frequently less than established catch limits. Since 2005 total catch of the rougheye and blackspotted rockfish complex ranged from $20-60 \%$ of the Total Allowable Catch (Shotwell and Hanselman, 2019). Shortraker rockfish catches have been variable, but in general have remained low during the same period though catches in nonpelagic trawl fisheries have had some years with higher exploitation rates (Echave and Hulson, 2019). It is, therefore, unlikely that changes in fishing pressure have had a causal relationship with the observed changes in the reproductive parameters of these two species. Changes in the energy available to fish due to environmental factors are a more likely driver for this change. Buoy data from the Gulf of Alaska indicates that surface ocean temperatures were consistently colder throughout 2009 than in 2015 (https://www.ndbc.noaa.gov/). A change in water temperatures has the potential to shift the phenology of the reproductive cycle, but there is no evidence that this occurred as mature fish were in similar reproductive stages in both periods. It is not possible to determine if a decrease in skipped spawning rates is related to this environmental change but it is possible more favorable conditions for both species occurred prior to and during the period of reproductive development in 2015.

The ability of a species to respond to environmental changes by altering reproductive parameters is dependent on its evolutionary history. Due to underlying differences in the mechanisms of how reproductive parameters change, the time scale of these changes will also be unique to the parameter. Changes in the length or size at maturity that occur due to fishery induced selection for slower growth and smaller age at maturity will likely occur over a much longer time scale than changes in reproductive traits that occur due to energetic or environmental stressors. The latter will likely occur within a year of the reproductive season whereas the former may take a period of years.

Many rockfish of the Sebastes genus have immature individuals that abort reproductive development (Nichol and Pikitch, 1994; Hannah and Parker, 2007; Conrath and Knoth, 2013), and there is evidence that this may be related to environmental conditions in some species (Hannah and Parker, 2007). A distinction is made here between abortive mature fish and skipped spawners with the former referring to fish that have not spawned before. This distinction is important because the standard practice is to consider abortive mature fish functionally immature and this directly influences maturity ogives developed for these species (Nichol and Pikitch, 1994; Conrath and Knoth, 2013). The proportion of young maturing fish that are able to successfully reproduce has a fairly simple and direct impact on estimates of age and length at maturity with more successful reproduction lowering both the size and age at maturity. It is difficult to know if these abortive mature fish are physiologically mature and environmental factors are the drivers that lead to an unsuccessful reproductive event or if they are not yet physiologically mature.

In contrast, skipped spawners are fish that are known to be physiologically mature. Maturity is a physiological event that occurs once during the life of a fish, whether or not they successfully spawn in any given year. It is therefore, most appropriate to include skipped spawners as mature fish within a maturity analysis. However, the inclusion of non spawning fish within a maturity ogive may be problematic for stock assessment efforts and developing a spawning ogive may be more appropriate. Alternative methods to define and model maturity have been developed for some rockfish species (Head et al. 2020). It is difficult to assess the cause of the changes in skipped spawning in this study without additional data from more years. Skipped spawning is similarly thought to occur as a response to limited food resources, poor body condition, or inadequate energy reserves (Skjaeraasen et al., 2012; McBride et al., 2015; Skjaeraasen et al., 2015) and may occur prior to reproductive development (resting skip spawner) or during reproductive development (resorbing skip spawner). Rougheye rockfish in the current study that were skipped spawners were predominately of the resorbing type, and shortraker rockfish were comprised primarily of resting skipped spawners in the earlier period and resorbing skipped spawners in the later period. Both are therefore mechanisms for changing reproductive output prior to and during spawning for individual fish, as well as larger potential population level changes that may occur over longer time periods. In addition, the downregulation of fecundity is often thought to occur as a response to available energy reserves, occurring between the onset of reproductive development and spawning and this will also reduce the reproductive output of a fish. Being able to respond to environmental conditions and energetic levels at different time scales may allow fish to optimize tradeoffs between survival, growth, and reproductive output.

A better understanding of how meaningful and prevalent changes are in the reproductive productivity for deepwater rockfish and other species will require study of additional years. Changes in reproductive traits over time are a reflection of the ability of a population to be resilient to varying environmental parameters and fishing pressure. LowerreBarbieri et al. (2016) define reproductive resilience as, "reproductive capacity of a population to maintain the level of reproductive success needed to result in long-term population stability despite disturbances such as environmental perturbations and fishing." Factors that may impact reproductive resilience include spatial distribution and heterogeneity and age truncation (Berkeley et al., 2004; Hsieh et al., 2008). Female fish with larger bodies have greater stores of energy that may be able to consistently energetically support spawning during periods of lower food availability or less favorable environmental conditions, thereby increasing the reproductive resilience of the population. The maternal size dependent effect on fecundity has been shown to vary among rockfish species (Beyer et al., 2015; Dick et al., 2017) and our results indicate this effect is stronger in rougheye rockfish than shortraker rockfish. The proportion of rougheye and shortraker rockfishes examined in this study that were exhibiting skipped spawning decreased with increasing size and age. There appears to be a size at which skipped spawning rates become negligible. The truncation of size or age structure is a potential concern in the management of fish species, particularly populations with an equilibrium life history strategy that are characterized by variable reproductive success (Leaman and Beamish, 1984; Vallin and Nissling, 2000; Beldade et al., 2012; Hixon et al., 2014). For these deepwater rockfish species, the increased reproductive success of larger and older females emphasizes the importance of understanding, monitoring, and conserving the age structure of these
populations. In addition, fishes that have fixed geographic spawning areas may be less able to withstand the effects of a changing climate (Asch et al., 2019). A better understanding of reproductive resilience of these species will aid in the management of these deepwater rockfish species.

Acknowledgements

The authors wish to thank K. Echave and K. Coutre for valuable assistance in the field and C. Rodgveller for assistance with the logistics and preparation of the field work associated with this project. In addition, we wish to acknowledge the crew and the captain of the FV Gold Rush for assisting in collecting samples during charter operations. We would also like to thank the AFSC Age and Growth laboratory for providing age and growth data for rougheye rockfish. This work was supported by the National Cooperative Research program and the North Pacific Research Board (Project 1401).

References

Allen, M.J., Smith, G.B., 1988. Atlas and zoogeography of common fishes in the Bering Sea and northeastern Pacific. U.S. Department of Commerce, NOAA Technical Report NMFS 66, 151 p.

Asch, R.G., Stock, C.A., Sarmiento, J.L., 2019. Climate change impacts on mismatches
between phytoplankton blooms and fish spawning phenology. Global Change Biology 00: 1-16.

Beldade, R., Holbrook, S.J., Schmitt, R.J., Planes, S., Malone, D., Bernardi, G., 2012. Larger female fish contribute disproportionately more to self-replenishment. Proceedings of the Royal Society B 279:2116-2121.

Berkeley, S.A., Chapman, C., Sogard, S.M., 2004. Maternal age as a determinant of larval growth and survival in a marine fish (Sebastes melanops) Ecology 85:12581264.

Beyer, S. G., Sogard, S.M., Harvey, C.J., Field, J.C., 2015. Variability in rockfish (Sebastes spp.) fecundity: Species contrasts, maternal size effects, and spatial differences. Environmental Biology of Fishes 98:81-100.

Boehlert, G. W., Kusakari, M., Yamada, J., 1986. Reproductive mode and energy costs of reproduction in the genus Sebastes. In Proceedings of the International Rockfish Symposium; Anchorage, AK, 20-22 October, p. 143-152. Alaska Sea Grant Report AK-SG-87-02. Univ. Alaska Sea Grant College Program, Fairbanks, AK.

Bowers, M. J., 1992. Annual reproductive cycle of oocytes and embryos of yellowtail rockfish Sebastes flavidus (Family Scorpaenidae). Fishery Bulletin, U.S. 90:231-242.

Chilton, D. E., Beamish, R.J., 1982. Age determination in fishes studied by the groundfish program at the Pacific Biological Station. Canadian Special Publication of Fisheries and Aquatic Sciences, 60. 102 p.

Conrath, C.L., 2017. Maturity, spawning omission, and reproductive complexity of deepwater rockfish. Transactions of the American Fisheries Society 146: 495-507.

Conrath, C.L., 2019. Reproductive potential of light dusky rockfish (Sebastes variabilis) and northern rockfish (S. polyspinis) in the Gulf of Alaska. Fishery Bulletin, U.S. 117: 140150.

Conrath, C.L., Knoth, B., 2013. Reproductive biology of Pacific ocean perch in the Gulf of Alaska. Marine and Coastal Fisheries 5:21-27.

Dick, E.J., Beyer, S., Mangel, M. Ralson, S. 2017. A meta-analysis of fecundity in rockfishes (genus Sebastes). Fisheries Research 187: 73-85.

Echave, K.B., Hulson, P-J.F., 2019. Assessment of the shortraker rockfish stock in the Gulf of Alaska. In Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska. North Pacific Fishery Management Council, 605 W $4^{\text {th }}$ Ave, Suite 306, Anchorage, AK 99501.

Efron, B., Tibshirani, R., 1993. An introduction to the bootstrap. Chapman and Hall, New York. 436 p.

Folkvord, A., Jorgensen, C., Korsbrekke, K., Nash, R.D.M., Nilsen, T., Skjaeraasen, J.E., 2014. Trade-offs between growth and reproduction in wild Atlantic cod. Canadian Journal of Fisheries and Aquatic Sciences 71L 1106-1112.

Hannah, R.W., Parker, S.J., 2007. Age-modulated variation in reproductive development of female Pacific ocean perch (Sebastes alutus) in waters off Oregon. In Biology, Assessment, and Management of North Pacific Rockfishes (J. Heifetz, J.Dicosimo, A. J. Gharrett, M. S. Love, V. M. O’Connell, and R. D. Stanley, eds.), p. 1-20, Alaska Sea Grant Report AK-SG-07-01. Alaska Sea Grant Program, University of Alaska, Fairbanks.

Harris, P.J., McGovern, J.C., 1997. Changes in the life history of red porgy, Pagrus pagrus, from the southeastern United States, 1972 - 1994. Fishery Bulletin, U.S. 95: 732-747. Head, M.A., Cope, J.M., Wulfing, S.H. 2020. Applying a flexible spline model to estimate functional maturity and spatio-temporal variability in aurora rockfish (Sebastes aurora). Environmental Biology of Fishes 103: 1199-1216.

Hixon, M.A., Johnson, D.W., Sogard, S.M., 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES Journal of Marine Science 71:2171-2185.

Hothorn, T., Bretz, F., Westall, P., Heiberger, R.M., 2008. multcomp: Simultaneous Inference in General Parametric Models, 2008. URL http://CRAN. R-project.org. R package version 1.0-0

Hsieh, C., Reiss, C.S., Hewitt, R.P., Sugihara, G., 2008. Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Canadian Journal of Fisheries and Aquatic Sciences 65: 947-961.

Hunter, J.R., Macewicz, B.J., 1985. Measurement of spawning frequency in multiple spawning fishes. In An egg production method for estimating spawning biomass of pelagic fish: application to the northern anchovy, Engraulis mordax (R. Lasker, ed.), p. 79-94. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 36.

Hunter, A., Speirs, D.C., Heath, M.R., 2019. Population density and temperature correlate with long-term trends in somatic growth rates and maturation schedules of herring and sprat. PLoS ONE 14(3): e0212176. https://doi.org/10.1371/journal.pone. 0212176

James, G., Witten, D., Hastie, R., Tibshirani, R. 2014. An Introduction to Statistical Learning With

Applications in R. Springer Publishing Company, Inc., New York.

Kendall, A. W., Lenarz, W.H., 1986. Status of early life history studies of northeast Pacific rockfishes. In Proceedings of the International Rockfish Symposium; Anchorage, 20-22 October, p. 99-128. Alaska Sea Grant Report AK-SG-87-02. Univ. Alaska Sea Grant College Program, Fairbanks, AK

Kennedy, J., Witthames, P.R., Nash, R.D.M., Fox, C.J., 2008. Is fecundity in plaice (Pleuronectes platessa L.) down-regulated in response to reduced food intake during autumn? Journal of Fish Biology 72: 78-92.

Kennedy, J., Gundersen, A.C., Boje, J., 2009. When to count your eggs: Is fecundity in Greenland halibut (Reinhardtius hippoglossoides W.) down-regulated? Fisheries Research 100:260-265.

Kulaw, D.H., Cowan, Jr., J.H., Jackson, M.W., 2017. Temporal and spatial comparisons of the reproductive biology of northern Gulf of Mexico (USA) red snapper (Lutjanus campechanus) collected a decade apart. PLOS ONE. https://doi.org/10.1371/journal.pone. 0172360

Leaman, B.M., Beamish, R.J., 1984. Ecological and management implications of longevity in some northeast Pacific groundfishes. International North Pacific Fisheries Commission Bulletin. 42.

Lowerre-Barbieri, S., Crabtree, L., Switzer, T., Burnsed, S.W., Guenter, C., 2016. Assessing reproductive resilience: an example with South Atlantic red snapper Lutjanus campechanus. Marine Ecology Progress Series 526: 125-141.

Mangeni-Sande, R., Taabu-Munyaho, A., Ogutu-Ohwayo, R., Nkalubo, W., Natugonza, V.,

Nakiyande, H., Nyamweya, C.S., Muwanika, V.B., 2019. Spatial and temporal differences in life history parameters of Rastrineobola argentea (Pellegrin, 1904) in the Lake Victoria basin in relation to fishing intensity. Fisheries Management and Ecology 26: 406-412.

Marty, L., Rochet, M-J., Ernande, B., 2014. Temporal trends in age and size at maturation of four North Sea gadid species: cod, haddock, whiting, and Norway pout. Marine Ecology Progress Series 497: 179-197.

McBride, R.S., Somarakis, S., Fitzhugh, G.R., Albert, A., Yaragina, N.A., Wuenschel, M.J., Alonso-Fernandez, A., Basilone, G., 2015. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish and Fisheries 16:23-57.

McElroy, W.D., Wuenschel, M.J., Towle, E.K., McBride, R.S., 2016. Spatial and annual variation in fecundity and oocyte atresia of yellowtail flounder, Limanda ferruginea, in U.S. waters. Journal of Sea Research 107: 76-89.

Mion, M., Thorsen, A., Vitale, F., Dierking, J., Herrmann, J.P., Huwer, B., von Dewitz, B., Casini, M., 2018. Effect of fish length and nutritional condition on the fecundity of distressed Atlantic cod Gadus morhua from the Baltic Sea. Journal of Fish Biology 92: 1016-1034.

Nichol, D.G., Pikitch, E.K., 1994. Reproduction of darkblotched rockfish off the Oregon coast. Transactions of the American Fisheries Society 123:469-481.

Orr, J.W., Hawkins, S., 2008. Species of the rougheye rockfish complex: resurrection of Sebastes melanostictus (Matsubara 1934) and a redescription of Sebastes aleutianus (Jordan and Evermann 1898)(Teleostei: Scorpaeniformes). Fishery Bulletin, U.S. 106:111-134.

R Core Team (2015). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Rideout, R.M., Rose, G.A., 2006. Suppression of reproduction in Atlantic cod (Gadus morhua L.). Marine Ecology Progress Series 320:267-277.

Rideout, R.M., Rose, G.A., Burton, M.P.M. 2005. Skipped spawning in female iteroparous fishes. Fish and Fisheries 6:50-72.

Rideout, R.M., Morgan, M.J., Lilly, G.R., 2006. Variation in the frequency of skipped spawning in Atlantic cod (Gadus morhua) off Newfoundland and Labrador. ICES Journal of Marine Science 63:1101-1110.

Rijnsdorp, A.D., 1991. Changes in fecundity of female North Sea plaice (Pleuronectes platessa L.) between three periods since 1990. ICES Journal of Marine Science 48: 253-280.

Rodgveller, C.J., Lunsford, C.R., Fujioka, J.T., 2011. Effects of maternal age and size on embryonic energy reserves, developmental timing, and fecundity in quillback rockfish (Sebastes maliger). Fishery Bulletin, U.S. 110: 35-45.

Sheehan, D.C., Hrapchak, B.B., 1980. Theory and Practice of Histotechnology, 481 p. Battelle Press, Columbus, OH.

Shotwell, S.K., Hanselman, D.H., Hulson, P.F., Heifetz, J., 2014. Assessment of the rougheye and blackspotted rockfish stock complex in the Gulf of Alaska. In Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska. North Pacific Fishery Management Council, 605 W 4 ${ }^{\text {th }}$ Ave, Suite 306, Anchorage, AK 99501.

Shotwell, S.K., Hanselman, D.H., 2019. Assessment of the rougheye rockfish stock in the Gulf
of Alaska. In Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska. North Pacific Fishery Management Council, 605 W $4^{\text {th }}$ Ave, Suite 306, Anchorage, AK 99501.

Skjaeraasen, J.E., Nilsen, T., Kjesbu, O.S., 2006. Timing and determination of potential fecundity in Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 63: 310-320.

Skjaeraasen, J.E., Nash, R.D.M., Korsbrekke, K., Fonn, M., Nilsen, T., Kennedy, J., Nedreaas, K.A., Thorsen, A., Witthames, P.R., Geffen, A.J., Hoie, H., Kjesbu, O.S., 2012. Frequent skipped spawning in the world's largest cod population. Proceedings of the National Academy of Sciences of the United States of America 109: 8995-8999.

Skjaeraasen, J.E., Korsbrekke, K., Kjesbu, O.S., Fonn, M., Nilsen, T., Nash, R.D.M., 2013. Size-energy- and stage-dependent fecundity and the occurrence of atresia in the Northeast Arctic haddock Melanogrammus aeglefinus. Fisheries Research 138:120-127.

Skjaeraasen, J. E., Korsbrekke, K., Nilsen, T. Fonn, M., Kjesbu, O.S., Dingsor, G.E., Nash, R.D.M., 2015. Skipped spawning in Northeast Arctic haddock Melanogrammus aeglefinus. Marine Ecology Progress Series 526:143-155.

Sogard, S.M., Berkeley, S.A., Fisher, R., 2008. Maternal effects in rockfishes Sebastes spp.: a comparison among species. Marine Ecology Progress Series 360:227-236.

TenBrink, T.T., Spencer, P.D., 2013. Reproductive biology of Pacific ocean perch and northern rockfish in the Aleutian Islands. North American Journal of Fisheries Management 33: 373-383.

Vallin, L., Nissling, A., 2000. Maternal effects on egg size and egg buoyancy of Baltic
cod, Gadus morhua. Implications for stock structure effects on recruitment.
Fisheries Research 49:21-37.
Winemiller, K.O., Rose, K.A., 1992. Patterns in life-history diversification in north American fishes: Implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49: 2196-2218.

Stage	Physical description
1. Primary growth	Oogonia, early perinuclear and late perinuclear ooyctes
2. Early yolk	Oocytes contain the earliest signs of yolk accumulation,
	oocyte spherical globules of yolk in the periphery of the
3. Advanced yolk	Oocyte content is at least 50\% yolk droplets, nucleus still
4. Migratory nucleus	nucleus migrates to the periphery of the oocyte, nuclear
membrane becomes irregular, nucleoli disappear	
5. Ovulation	Yolk material begins to merge and form a single united
mass	
6. Early embryo	Blastoderm cap present with a large yolk mass
7. Embryo body	Embryo body appears, blastoderm cap of cells develops
8. Eyed embryo	into recognizable tissue
Retinal pigmentation becomes apparent and is well	

Table 1
Stages of oocyte and embryo development in ovaries of rougheye (Sebastes aleutianus) and shortraker (S. borealis) rockfish. These stages, based on terminology of Bowers (1992), were used to identify the most advanced development stage present in samples from fish collected during December 2015 in the Gulf of Alaska.

Class	Oocyte or embryo development	Description
Immature	Primary growth	No oocyte development beyond stage 2.
Abortive maturity	Oocyte development is initiated, then oocytes are resorbed. No evidence of prior spawning. Identified histologically by presence of widespread alpha atresia, but no POFS and no widespread beta or delta atresia.	
	Development No development (skipped spawning) Resting	Oocyte or embryo development at stage 3 or at a more advanced stage of development.
		No initiation of oocyte development. Identified histologically by development in stage 1 or 2 with evidence of a prior spawning (beta or delta atresia or POFs).
Resorbing	Oocyte development is initiated, but oocytes are later resorbed. Evidence of a prior spawning present. Identified histologically by widespread alpha atresia and evidence of a prior spawning (POFs or widespread beta or delta atresia).	

Table 2
Classifications used to determine maturity of rougheye rockfish (Sebastes aleutianus) and shortraker rockfish (S. borealis) collected in December 2015 in the Gulf of Alaska. POF= postovulatory follicles. For stages of oocyte and embryo development, see Table 1.
\qquad

Table 3

Reproductive parameter estimates of rougheye rockfish and shortraker rockfish collected in 2015 and reproductive parameter estimates from the earlier study (Conrath, 2017). Maturity stages are presented for mature fish that were developing in the months of November through January for both studies. $\mathrm{N}=$ number of samples, TPAF $=$ total annual potential fecundity, L50 $=$ length at 50% maturity, $\mathrm{A} 50=$ age at 50% maturity, and $\mathrm{Cl}=95 \%$ confidence interval.

	Parameter	Rougheye	Rougheye, prior study	Shortraker	Shortraker, prior study
Maturity	N	285	492	270	352
	Length range	$\begin{aligned} & 366-625 \mathrm{~mm} \\ & (\text { mean }=461 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 250-740 \mathrm{~mm} \\ & (\text { mean }=470 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 425-927 \mathrm{~mm} \\ & (\text { mean }=611 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 380-950 \mathrm{~mm} \\ & (\text { mean }=602 \mathrm{~mm}) \end{aligned}$
	Age range	$9-82$ years	4-98 years		
	Maturity stages (winter months)	Stage 3, 17.6\% Stage 4, 77.8\% Stage 5, 4.6\%	$\begin{array}{r} 13.8 \% \\ 78.0 \% \\ 8.3 \% \end{array}$	$\begin{aligned} & 33.9 \% \\ & 66.1 \% \end{aligned}$	$\begin{aligned} & 32.5 \% \\ & 53.5 \% \\ & 14.0 \% \end{aligned}$
	L50	$\begin{aligned} & 447 \mathrm{~mm}(\mathrm{Cl} 440- \\ & 452 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 450 \mathrm{~mm}(\mathrm{Cl} 445- \\ & 456 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 467 \mathrm{~mm}(\mathrm{Cl} 442- \\ & 491 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 494 \mathrm{~mm}(\mathrm{Cl} 479- \\ & 508 \mathrm{~mm}) \end{aligned}$
	A50	17.7 years (Cl 16.4 - 19.4 years)	$\begin{aligned} & 19.6 \text { years (Cl } \\ & 18.2-20.8 \text { years) } \end{aligned}$		
Fecundity	N	127	102	112	39
	Length range	$\begin{aligned} & 418-625 \mathrm{~mm} \\ & (\text { mean }=505 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 430-630 \mathrm{~mm} \\ & (\text { mean }=488 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 450-900 \mathrm{~mm} \\ & (\mathrm{mean}=650 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 500-950 \mathrm{~mm} \\ & (\mathrm{mean}=760 \mathrm{~mm}) \end{aligned}$
	Weight range	$\begin{aligned} & 1,204-4,210 \mathrm{~g} \\ & (\text { mean }=1,977 \mathrm{~g}) \end{aligned}$	$\begin{aligned} & 1,152-4,694 \mathrm{~g} \\ & (\text { mean }=2,130 \mathrm{~g}) \end{aligned}$	$\begin{aligned} & 1,628-12,150 \mathrm{~g} \\ & (\text { mean }=5,100 \mathrm{~g}) \end{aligned}$	$\begin{aligned} & 2,212-13,660 \mathrm{~g} \\ & (\text { mean }=8,218 \mathrm{~g}) \end{aligned}$
	Mean TPAF range	$\begin{aligned} & \text { 133,000 - } \\ & \text { 1,830,000 oocytes } \end{aligned}$	$\begin{aligned} & \text { 79,200 - } \\ & \text { 1,720,000 oocytes } \end{aligned}$	$\begin{aligned} & 39,700- \\ & 1,430,000 \text { oocytes } \end{aligned}$	$\begin{aligned} & \text { 124,000 - } \\ & 1,410,000 \text { oocytes } \end{aligned}$
	Relative fecundity range	87.1-436 oocytes/g	$37.9-386$ ooyctes/g	$8.03-406$ oocytes/g	$16.0-361$ oocytes/g
Skipped spawning	N	188	175	230	80
	Length range	$\begin{aligned} & 415-625 \mathrm{~mm} \\ & (\mathrm{mean}=493 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 415-626 \mathrm{~mm} \\ & (\text { mean }=486 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 400-927 \mathrm{~mm} \\ & (\text { mean }=680 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 450-950 \mathrm{~mm} \\ & (\text { mean }=620 \mathrm{~mm}) \end{aligned}$
	Skipped spawning rate	$\begin{aligned} & \text { 21.8\% (CI } 15.7 \text { - } \\ & \text { 28.0\%) } \end{aligned}$	$\begin{aligned} & 37.4 \% \text { (CI } 29.9 \text { - } \\ & 44.9 \% \text {) } \end{aligned}$	$\begin{aligned} & 47.0 \% \text { (CI } 40.1 \text { - } \\ & 53.8 \% \text {) } \end{aligned}$	$\begin{aligned} & \text { 60.0\% (Cl } 49.2 \text { - } \\ & 70.8) \end{aligned}$

Figure Captions.

Fig. 1. Logistic maturity curves for a) length of rougheye rockfish (Sebastes aleutianus) and b) age of rougheye rockfish during each time period (observed = observed proportion mature at each size or age; estimated = logistic curve fit to the data; dashed lines $=95 \%$ confidence limits, UCL = upper confidence limit, LCL = lower confidence limit, EP = earlier time period (2009 2014). LP = later time period (2015)). Bars at the top and bottom of the chart represent the number of fish in each 1 cm length or 1 year age bin that are mature (top) or immature (bottom).

Fig. 2. Logistic maturity curve for length of shortraker rockfish (Sebastes borealis, observed = observed proportion mature at each size or age; estimated = logistic curve fit to the data; dashed lines $=95 \%$ confidence limits, UCL = upper confidence limit, $L C L=$ lower confidence limit, EP = earlier time period (2009-2014), LP = later time period (2015)). Bars at the top and bottom of the chart represent the number of fish in each 1 cm length bin that are mature (top) or immature (bottom).

Fig. 3. Relationships of the a) potential annual fecundity (number of developing oocytes) with the power regression curves for both species (data combined for both time periods) and b) relative fecundity, calculated as potential annual fecundity divided by somatic weight, to fork length for rougheye rockfish (Sebastes aleutianus) and shortraker rockfish (S. borealis). EP =
earlier time period (2009 and 2010), LP = later time period (2015), RE = rougheye rockfish, $\mathrm{SR}=$ shortraker rockfish.

Fig. 4. Proportion of a) rougheye rockfish (Sebastes aleutianus) and b) shortraker rockfish (S. borealis) that experienced skipped spawning caused by resting and resorbing types of skipped spawning, $\mathrm{SS}=$ skipped spawners, $\mathrm{EP}=$ earlier time period $(2009-2010), \mathrm{LP}=$ later time period (2015), RE = rougheye rockfish, and $\mathrm{SR}=$ shortraker rockfish.

Fig. 5. Proportion of a) rougheye rockfish (Sebastes aleutianus) and b) shortraker rockfish (S. borealis) that experienced skipped spawning by fork length, EP = earlier time period (2009 2010), LP = later time period (2015). Bars at the top and bottom of the chart represent the number of fish in each 10 mm length bin that are skipped spawners (top) or non-skipped spawners (bottom).

[^0]: ${ }^{1}$ Corresponding author.
 E-mail address: Christina.Conrath@noaa.gov (C. Conrath).

